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NONLINEAR WAVES ON THE SURFACE OF A LIQUID FILM RUNNING DOWN A 

VERTICAL WALL 

Yu. Ya. Trifonov and O. Yu. Tsvelodub UDC 532.51 

It is known from experiments [I, 2] that the flow of a liquid film down a vertical plane 
has a wave character even for small Reynolds numbers. This is related to the fact that the 
flow of a film of thickness h with a plane free surface whose velocity profile is semipara- 
bolic, u = 3u0(y/h -- y2/2h2), is unstable starting from very small Reynolds numbers, i.e., 
infinitesimal long-wave disturbances increase exponentially with time [3, 4]. As a result 
of nonlinear effects stationary periodic and soliton flow regimes may be formed. Since a 
complete treatment of such problems is extremely complicated, various simplifications are 
used to solve it. 

Thus, for low flow rates (Re ~ I) the problem of wave regimes can be reduced to that of 
solving a single equation for the film thickness [5]. However, stationary traveling waves 
are practically not observed at these flow rates, and although the form of the solutions of 
this equation [6] is in good qualitative agreement with the form of the waves observed in 
experiment, there is no quantitative agreement. A similar situation occurs also with a two- 
wave equation [7] which contains only quadratic nonlinear term, and therefore describes the 
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behavior of only weakly nonlinear waves for moderate flow rates. For such flow rates (Re 
10-100) experiments show that there are nonlinear waves [2] whose amplitude is of the same 
order of magnitude as the average film thickness, and which cannot be described by taking 
account of only a quadratic nonlinearity. 

Under the assumption that the longitudinal velocity profile is self-similar 

u = 3U(x, t)(y/h(z, t ) -  y2/2h2(x, t)) (1 )  

and that the waves are long, a system of equations was derived [7, 8] to describe the behavior 
of disturbances on a film for moderate values of Re: 

aq a ( q  2 )  3v ~h a3h ah aq 
o - T + i ' 2 ~ x  __-hZ = --  --~- q + gh + P Ox 3 , at + - ~ - : 0 ,  (2 )  

w h e r e  q i s  t h e  i n s t a n t a n e o u s  f l o w  r a t e  o f  t h e  l i q u i  d i n  t h e  c r o s s  s e c t i o n  x ,  h i s  t h e  i n -  
s t a n t a n e o u s  f i l m  t h i c k n e s s ,  g i s  t h e  a c c e l e r a t i o n  due  t o  g r a v i t y ,  a n d  o i s  t h e  s u r f a c e  t e n -  
s ion. 

Weakly nonlinear periodic solutions of system (2) were found in [8, 9], and negative 

solitons for which ~ (h--h~)dx<0 , where h~ is the thickness of the undisturbed film, were 
--oo 

found in [I0]. 

The purpose of the present article is to find strongly nonlinear periodic stationary 
waves which in the limit as the wave number e + 0 pass over into positive soliton solutions 

( h - - h ~ ) d x > O  , and  t o  c o m p a r e  t h e m  w i t h  e x p e r i m e n t .  

F o r  a s t a t i o n a r y  t r a v e l i n g  wave  

h = h(~),  q = ~t(~), ~ = x - -  ct (3)  

w h e r e  c i s  t h e  p h a s e  v e l o c i t y  o f  t h e  w a v e ,  we o b t a i n  f r o m  t h e  s e c o n d  o f  E q s .  (2 )  

;,q .= go [t + ( cho /qo ) (h /ho -  l ) ] ,  (4 )  

where q0 is the flow rate in the cross section where h = h0. 

Choosing these quantities as characteristic, and using them to make Eqs. (2)-(4) dimen- 
sionless, we obtain (omitting the dimensionless sign) 

--c~h ' + 2.4c(i  + c(h - -  ~))h ' /h  - -  1,2(i  + c(h - -  l ) )2h ' /h  ~ 

- -  3(1 + c(h - -  l ) ) / R e h  ~ + h/Fr  + W e h h ' " ,  ( 5 )  

2 3 l~e = qo/v, Fr  = qo/gho, We = aho/pq ~. 

P r i m e s  d e n o t e  d i f f e r e n t i a t i o n  w i t h  r e s p e c t  t o  r  

F o r  p e r i o d i c  s o l u t i o n s  we t a k e  a s  h0 t h e  t h i c k n e s s  a v e r a g e d  o v e r  a w a v e l e n g t h  ~: 

h 0 ----  <h> = T 
0 

It is clear from (4) that in this case q0 - <q>. For soliton solutions we take as h0 the 
value of h at infinity. 

In a wave-free film h = I, and 

qo = ghSo/3~'-~ Fr  = Re/3. 

By n e g l e c t i n g  n o n l i n e a r  t e r m s ,  t h e  d i m e n s i o n l e s s  E q s .  (2 )  y i e l d  t h e  r e s u % t _ o f  t h e  l i n e a r  
t h e o r y :  d i s t u r b a n c e s  o f  t h e  f o r m  exp  [ i a ( x  --  c t ) ]  a r e  u n s t a b l e  f o r  ~ < aH = / 3 / W e .  I f  we i n -  
t r o d u c e  t h e  new c o o r d i n a t e  51 = ~ 3 / ~ e ,  f o r  H = h --  1 Eq.  (5 )  t a k e s  t h e  f o r m  

( c z - -  3 F ) H  + (0,2 c ~ - -  i ,2(c  - -  t)~)H ' - -  3 H ' "  = f - -  z + 

+ 3 F ( H  ~ + H3/3) - -  0 , 4 c 2 t t ' ( H  + He~2) + 9 H ' " ( H . +  H 2 + H3/3),  (6 )  

where 

6 1 6  



Making this change normalizes the range of unstable wave numbers to unity. Using the fact 

that <H> = 0, we find from (6) a relation between the parameters F and z for periodic solu- 

tlons: 

F = -~ - -  9 <g" (g + H ~ + HS/3)> 

t + 3 <H 2 + H313> " 

Since soliton solutions are the limiting forms for periodic solutions as X § ~, for them 
F = z. 

Thus the problem is reduced to that of finding periodic and soliton solutions of Eq. 

(6). The phase velocity e is the eigenvalue, and z is a parameter. We convert to experi- 
mentally measurable quantities by the formulas 

R e  = (8i~3FIgp%lz~)lP 1, c* = c(o2g%,igp~F~z)l/11, 

~ ,  2~ ~4 2F5 4 5 2 1 i l l  = - g -  ( v 19p g z ) , A*  = A (243~v~F41pg4z6)li11~ 

w h e r e  e * ,  t * ,  a n d  A* a r e  t h e  d i m e n s i o n a l  p h a s e  v e l o c i t y  w a v e l e n g t h  a n d  a m p l i t u d e  o f  t h e  w a v e .  

We seek a periodic wave with a wave number ~ in the form 

I f  = ~ Hn exp [ian~l]. 
( 7 ) 

Since H is a real function, H n = H-n, where the bar denotes the complex conjugate. 

Retaining the first N/2 harmonics in (7), and substituting them into Eq. (6), we obtain 

a system of N + I equations for N + 3 unknowns (F, c, H0, H•177 

3F~ n -- 0.4c2~n + 9Xn 

cz - -  3Y + g~n (0.2c 2 - - : t ,2  (c - -  t) 2) + 3i~3n 3 ' ( 8 )  

n = O, __ t,: . . .~  -4- N / 2 .  

Here ~,r, ~n, and Xn are, respectively, the Fourier harmonics of the functions 

= H 2 + H3/3, ~ = H' (H + H2/2), i.% = H ' " ( H  + H a + / P / 3 ) .  

In view of the normalization of the function H, H0 ~ <H> = 0. In addition, we can always 
choose the point ~i = 0 so that, for example, Im (HI) = 0. 

Thus, system (8) consists of N + I nonlinear equations in N + I unknowns. For a speci- 

fied value of ~ the calculation was begun for large values of z, using the results from [11, 
12] as a first approximation. Smaller values of z were reached by requiring continuity. For 

each value of a there is a critical value z, such that for z < z, the solution cannot be found, 
at least by this method. The fast Fourier transform procedure (13) was used to calculate the 
Fourier transforms of the functions and their inverses [13]. In breaking off series (7), the 
number of harmonics was taken so as to satisfy the relation 

IH~/~ I/ sup 1 ~ I  < 1o -~. 
~n~N/2 

Depending on the values of a and z, the number N was varied from 16 to 128. 

Figure ] shows the z dependence of the phase velocity and amplitude of the waves for 
several values of the wave numbers; curves I-3 correspond to e = 0.2, 0.35, and 0.5, and cur- 
ves 4 to the soliton solutions. The points represent data on soliton solutions of the two- 
wave equation with a quadratic nonlinearity [7] obtained in [11, 12]. It can be seen from the 
graph that for large values of z the waves are weakly nonlinear, and that the results are in 
good agreement. 

Figures 2 and 3 compare the calculated (lines) profiles of strongly nonlinear waves for 
a water-glycerine film (~ = 4.9"10 -6 m2/sec, o/p = 59-]0 -~ m3/sec 2, Re = 7.2) with the experi- 
mental (points) values from []4]. In Fig. 2, I = 34.3 mm, Cexp = 320 mm/see, Cealc = 318 mm/ 
sec; in Fig. 3, i = 18.5 mm, Ccalc = 262 mm/sec, Cex p = 270 mm/sec. Clearly there is good 
quantitative agreement. 

A similar comparison for water (~ = 1.03-I0 -6 m2/sec, o/0 = 72.9"10 -6 m3/sec e Re = 9.8) 

is given in Fig. 4, where I = 36.8 mm, Ccalc = 260 mm/sec, and Cex p = 232 mm/sec (experimental 
values from [2]). The agreement is somewhat worse, but quite satisfactory. 
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It can be seen from Figs. 2-4 that the greatest differences between the calculated and 
experimental values occur on the oscillating leading edge of the waves. Apparently this is 
related to the fact that assumption (I) is rather crude for a detailed description of the 
fine structure. 

Figure 5 summarizes the experimental data [2, 15] on the dependence of the wave velocity 
on amplitude for water (~ = 1.03"I0 -G m/sec, o/p = 72.9-10 -6 m3/sec -- curve I) and water-- 
glycerine solutions (curve 2- ~ = 2.06.10 -e m2/sec, o/0 = 40.3"10 -~ m3/sec2; curve 3 -- ~ = 
11.2-10 -6 m2/sec, o/p = 55.9-10 -6 m3/see2). The corresponding points I-3 represent the cal- 
culated values. Although the values of z and ~ for a given material were varied in the cal- 
culations, it is clear that the calculated points lie practically on straight lines. 

In the calculations solutions were found with negative values of the velocity of the 
liquid in certain cross sections, corresponding to retrogressive flow. In other solutions 
regimes were found in which the velocity of the liquid at the wave crests is higher than the 
phase velocity, corresponding to supercritical flow. It is clear from (I) and (4) that these 
situations arise, respectively, for cross sections in which the deviations from the average 
level satisfy the inequalities h < hmin = --I/c, h > hma x = (2c -- 3)/c. 

It should be noted that in the transition from normal wave regimes to regimes with re- 
trogressive flows in the troughs, and to supercritical regimes, there are no changes of the 
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dependence of the wave amplitudes on the velocity. Thus, in Fig. 5 for water these regimes 
correspond to calculated points with an amplitude a % I. 

So far such regimes have not been detected experimentally. This maybe due to the fact 
that the supercritical and retrogressive zones occupy narrow portions on the wavelength, and 
are difficult to fix, and possibly the fact that they appear in the calculations as a result 
of making the simplifying assumption (I). 
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